

1 | P a g e

TMS FNC UI Controls

TMS FNC UI Controls, a set of framework neutral controls

Introduction

As your customers use an ever increasing number of devices & operating systems, it is a daily

challenge for us, software developers to make our software available for the myriad of target

platforms in use. Fortunately, as Pascal developers, we already have a huge benefit that Delphi

meanwhile targets 4 platforms: Windows, Mac OSX, iOS and Android. Add Lazarus to that, and

Pascal developers can also target Linux and its derivatives such as Raspbian and many more. The 3

main frameworks we have available to create our software for these platforms are: VCL, FMX and

LCL. The framework to use will be determined by the target and the IDE used. That implies that the

controls that can be used are also typically determined by this choice and might limit your abilities

when some controls or control features are not available for one of these frameworks. Addressing

that limitation is exactly one of the primary goals of the TMS FNC UI Controls. It offers you a set of

powerful & feature-rich UI controls that you can use in Delphi's VCL framework, FMX framework and

Lazarus LCL framework. It allows to create Win32, Win64, Mac OS-X, iOS, Android, Linux, Raspbian,

... applications with a single codebase and a single learning curve.

Concept

FNC controls enable you to write and use 100% identical Pascal code, be it in a VCL app, FMX app or

LCL app. The FNC components methods, properties and events are therefore 100% identical

regardless of the framework being used. As an example, the following code creates a new event in

our FNC Planner control:

var

 plIt: TTMSFNCPlannerItem;

begin

 plIt := TMSFNCPlanner1.Items.Add;

 plIt.StartTime := Date + EncodeTime(14,0,0,0);

 plIt.EndTime := Date + EncodeTime(16,0,0,0);

 plIt.Title := 'New event';

 plIt.Text := 'Content';

end;

and from this code, it is impossible to tell whether it will be from a VCL, FMX or LCL app. In the

application UI, it will also look exactly the same regardless of framework or operating system:

2 | P a g e

TMS FNC UI Controls

This means that if you properly separate your logic or adopt an MVC approach, you can easily share

.PAS files between VCL and FMX projects, between VCL and LCL projects etc... There are in this

respect actually only two limitations. First limitation is the design-time form fileformat that is

different between VCL, FMX and LCL. VCL uses the .dfm file, FMX uses the .fmx file and LCL uses the

.lfm file. For applications for different devices with different form factors, it typically already requires

to design the form separately for separate frameworks, so this isn't too much of a limitation. For

other applications, a solution is to create the controls at runtime. A second limitation is the

namespaces (unit names). To be able to register identical classnames for different framework

controls in Delphi, it is required that these live in different namespaces. As such, the FNC VCL

controls unit names have the prefix VCL., the FNC FMX controls unit names have the prefix FMX. and

the FNC LCL controls use prefix LCL (without dot, to be able to support FPC versions older than v3.0)

In practice, this means that for the example above with the TMSFNCPlanner, the unit clauses for the

different frameworks would be as below. To keep using a single source file, a solution is to set a

define at project level depending on the framework and write:

uses

{$IFDEF VCL}

 VCL.TMSFNCPlannerBase, VCL.TMSFNCPlannerData, VCL.TMSFNCPlanner,

VCL.TMSFNCCustomControl;

{$ENDIF}

{$IFDEF FMX}

 FMX.TMSFNCPlannerBase, FMX.TMSFNCPlannerData, FMX.TMSFNCPlanner,

FMX.TMSFNCCustomControl;

{$ENDIF}

{$IFDEF LCL}

 LCLTMSFNCPlannerBase, LCLTMSFNCPlannerData, LCLTMSFNCPlanner,

LCLTMSFNCCustomControl;

{$ENDIF}

3 | P a g e

TMS FNC UI Controls

In the same way, when used, we could include the resource of our form file that is different in each

framework via a conditional define:

{$IFDEF VCL}

{$R *.dfm}

{$ENDIF}

{$IFDEF FMX}

{$R *.fmx}

{$ENDIF}

{$IFDEF LCL}

{$R *.lfm}

{$ENDIF}

These are of course the things you need to take in account when you want to create a single

codebase to build projects with multiple frameworks. In other cases, you do not need to take care of

this and you can enjoy the exact same feature set of this UI component library irrespective of the IDE

and platform you target.

Another important core concept is the introduction of the TMS FNC Graphics library that is included.

This enables you to write graphics code that is framework independent. This includes framework

neutral colors, fill, stroke, alignment, font, path types and the TTMSFNCGraphics class using this to

draw everything you need. This is a sample code snippet of framework neutral drawing:

var

 gr: TTMSFNCGraphics;

begin

 gr := TTMSFNCGraphics.Create(PaintBox1.Canvas);

 gr.Fill.Color := gcYellow;

 gr.Stroke.Color := gcGray;

 gr.DrawRectangle(0,0,100,20);

 gr.Font.Color := gcRed;

 gr.DrawText(2,0,100,20,'Hello world',false)

 gr.Free;

end;

The result is:

and is exactly the same on every framework, target, device, ...

4 | P a g e

TMS FNC UI Controls

Controls

In TMS FNC UI Pack v1.0, there are already 29 controls included. On the tool palette this looks like:

VCL, FMX

LCL

5 | P a g e

TMS FNC UI Controls

This includes a grid, planner, richeditor, treeview, various color, font, fontsize, bitmap ... picker ,

toolbar, ... and more.

Introducing the TMS FNC Grid

The TMS FNC Grid is a high-performance, not data-bound grid capable of dealing with hundreds of

thousands of rows, has a wide range of cell types and inplace editors, offers built-in sorting, filtering

and grouping and can import and export data in several file formats. To illustrate some of the

capabilities of the TMS FNC Grid,

begin

 TMSFNCGrid1.FixedRows := 2;

 TMSFNCGrid1.ColumnCount := 7;

 TMSFNCGrid1.MergeCells(1,0,2,1);

 TMSFNCGrid1.MergeCells(3,0,2,1);

 TMSFNCGrid1.MergeCells(5,0,2,1);

 TMSFNCGrid1.Cells[1,0] := 'Monday';

 TMSFNCGrid1.HorzAlignments[1,0] := gtaCenter;

 TMSFNCGrid1.Cells[1,1] := 'AM';

 TMSFNCGrid1.Cells[2,1] := 'PM';

 TMSFNCGrid1.Cells[3,0] := 'Tuesday';

 TMSFNCGrid1.HorzAlignments[3,0] := gtaCenter;

 TMSFNCGrid1.Cells[3,1] := 'AM';

 TMSFNCGrid1.Cells[4,1] := 'PM';

 TMSFNCGrid1.Cells[5,0] := 'Wednesday';

 TMSFNCGrid1.HorzAlignments[5,0] := gtaCenter;

 TMSFNCGrid1.Cells[5,1] := 'AM';

 TMSFNCGrid1.Cells[6,1] := 'PM';

 TMSFNCGrid1.AutoNumberCol(0);

 TMSFNCGrid1.AddCheckBox(1,2,false);

 TMSFNCGrid1.AddRadioButton(1,3,1);

 TMSFNCGrid1.AddProgressBar(3,2,50);

 TMSFNCGrid1.Cells[3,3] := 'Hello world';

 TMSFNCGrid1.AddBitmapFile(5,2,'e:\tms\calendar.png');

 TMSFNCGrid1.AddBitmapFile(5,3,'e:\tms\mail.png');

 TMSFNCGrid1.Cells[1,4] := 'Red';

 TMSFNCGrid1.Colors[1,4] := gcRed;

 TMSFNCGrid1.Cells[3,4] := 'Yellow';

 TMSFNCGrid1.Colors[3,4] := gcYellow;

 TMSFNCGrid1.Cells[5,4] := 'Lime';

 TMSFNCGrid1.Colors[5,4] := gcLime;

 TMSFNCGrid1.FontNames[1,4] := 'Courier New';

 TMSFNCGrid1.FontStyles[3,4] := [fsBold];

 TMSFNCGrid1.FontSizes[5,4] := 12;

 TMSFNCGrid1.AddNode(2,2);

end;

6 | P a g e

TMS FNC UI Controls

As another quick introduction to the grid, this 2 line snippet demonstrates how data from a CSV file

can be loaded and automatic filtering via a drop down in the column header is enabled:

 TMSFNCGrid1.LoadFromCSV('e:\tms\cars.csv');

 TMSFNCGrid1.Options.Filtering.DropDown := true;

Of course, this is just a very brief introduction to the TMS FNC Grid. Just the FNC grid alone could

deserve multiple articles to cover it in detail. You can familiarize yourself with the TMS FNC Grid by

reading the full PDF developers guide you can find at

http://www.tmssoftware.biz/download/manuals/TMSFNCGridDevGuide.pdf or use the trial or full

version of the component that comes with several samples.

7 | P a g e

TMS FNC UI Controls

Introducing the TMS FNC Planner

Our TMS FNC Planner is a scheduling component with various built-in time-axis options, i.e. a day,

week, month, period, half-day period, timeline as well as custom time-axis mode where you can fully

control the duration of each timeslot in the Planner. The Planner supports single and multi-resource

views and can have the time-axis horizontal or vertical. When targetting the Planner to a mobile

device, it will automatically use a touch-friendly approach to select, insert, delete, pan in the

Planner. As a brief introduction to the TMS FNC Planner, we'll demonstrate a monthly car rental

Planner with horizontal time axis and several resources in the left axis.

In this code, we set the time axis programmatically horizontal and add 9 resources with 3 groups of 3

resources, representing small, medium and large cars. Via TMSFNCPlanner.Mode, we set the time

line to a day period timeline and via TMSFNCPlanner.ModeSettings the period is set to the month

May. After some further customization of timeline size and font, some random car rentals are added

on the Planner:

var

 grp: TTMSFNCPlannerGroup;

 plIt: TTMSFNCPlannerItem;

 i,d: integer;

begin

 TMSFNCPlanner1.OrientationMode := pomHorizontal;

 TMSFNCPlanner1.Mode := pmDayPeriod;

 TMSFNCPlanner1.Positions.Count := 9;

 TMSFNCPlanner1.Groups.Clear;

 grp := TMSFNCPlanner1.Groups.Add;

 grp.StartPosition := 0;

 grp.EndPosition := 2;

 grp.Text := 'Small';

 grp := TMSFNCPlanner1.Groups.Add;

 grp.StartPosition := 3;

 grp.EndPosition := 5;

 grp.Text := 'Medium';

 grp := TMSFNCPlanner1.Groups.Add;

 grp.StartPosition := 6;

 grp.EndPosition := 8;

 grp.Text := 'Large';

 TMSFNCPlanner1.Resources.Clear;

 for i := 0 to 8 do

 begin

 TMSFNCPlanner1.Resources.Add;

 TMSFNCPlanner1.Resources.Items[i].Text := 'Car '+inttostr(i + 1);

 end;

 TMSFNCPlanner1.TimeLineAppearance.LeftSize := 35;

 TMSFNCPlanner1.TimeLineAppearance.LeftFont.Size := 10;

 TMSFNCPlanner1.TimeLineAppearance.LeftFont.Style := [fsBold];

 TMSFNCPlanner1.ModeSettings.StartTime := EncodeDate(2016,5,1);

 TMSFNCPlanner1.ModeSettings.EndTime := EncodeDate(2016,6,1);

 TMSFNCPlanner1.TimeLine.DisplayUnitSize := 35;

 TMSFNCPlanner1.TimeLine.DisplayUnitFormat := 'd/m';

8 | P a g e

TMS FNC UI Controls

 for i := 0 to 10 do

 begin

 d := random(20);

 plIt := TMSFNCPlanner1.Items.Add;

 plIt.StartTime := EncodeDate(2016,5,1) + d;

 plIt.EndTime := EncodeDate(2016,5,1) + d + 1 + random(5);

 plIt.Resource := Random(9);

 plIt.Text := 'Rental';

 plIt.Color := gcYellowgreen;

 end;

end;

Introducing the TMS FNC RichEditor

With the TMS FNC Rich Editor you can assemble a WordPad-style editor or Outlook style mail

application in a matter of minutes. TMS FNC Rich Editor comes with capabilities to do WYSIWYG

editing of rich text with images, URLs, bullet lists, custom graphics, mail merging etc... To make

development even faster, there is a pre-built toolbar for rich editor editing and formatting and non-

visual components to facilitate the import and export from HTML & RTF files and that of course in all

frameworks, operating systems and target devices supported.

In this introduction sample, drop the TTMSFNCRichEditor on the form as well as the

TTMSFNCRichEditorFormatToolbar and assign the TTMSFNCRichEditor to

TTMSFNCRichEditorFormatToolbar.RichEditor. Also add a TTMSFNCRichEditorHTMLIO and

TTMSFNCRichEditorRTFIO non-visual component on the form and also assign the

TTMSFNCRichEditor to TTMSFNCRichEditorHTMLIO.RichEditor and

TTMSFNCRichEditorRTFIO.RichEditor.

The rich editor content can be initialized with following code to perform a mail-merge that uses here

two merge fields: NAME and EMAIL.

begin

 TMSFNCRichEditor1.AddText('Dear Mr. NAME');

 TMSFNCRichEditor1.AddLineBreak;

 TMSFNCRichEditor1.AddText('CC: EMAIL');

 TMSFNCRichEditor1.SelStart := 9;

 TMSFNCRichEditor1.SelLength := 4;

 TMSFNCRichEditor1.SetSelectionMergeField('NAME');

9 | P a g e

TMS FNC UI Controls

 TMSFNCRichEditor1.SelStart := 21;

 TMSFNCRichEditor1.SelLength := 5;

 TMSFNCRichEditor1.SetSelectionMergeField('EMAIL');

end;

When the app is started, the text can be further decorated by editing & formatting via the toolbar.

When it is ready, following code performs the merge with the NAME and EMAIL field and is exported

to RTF via TTMSFNCRichEditorRTFIO and after this, the merge is undone:

var

 sl: TStringList;

begin

 sl := TStringList.Create;

 try

 sl.Add('NAME=Elon Musk');

 sl.Add('EMAIL=elon@tesla.com');

 TMSFNCRichEditor1.Merge(sl);

 finally

 sl.Free;

 end;

 TMSFNCRichEditorRTFIO1.Save('e:\tms\merge.rtf');

 TMSFNCRichEditor1.UnMerge;

end;

10 | P a g e

TMS FNC UI Controls

Introducing the TMS FNC TreeView

Finally, another large feature-packed control from the TMS FNC UI Controls set we want to introduce

is the TMS FNC TreeView, TTMSFNCTreeView. This is a multi-column treeview control with regular

mode and virtual mode and designed for and capable of using millions of nodes. In addition, the

nodes support rich information, text atttributes can be customized per node cell, HTML formatted

text in node cells is possible, images, checkboxes can be added and optional inplace editing is

available.

In this introduction we'd like to demonstrate the difference in regular (node collection) based mode

and virtual mode when using the TTMSFNCTreeView. The first code snippet demonstrates an

initialization of a 2 column treeview:

var

 tn,cn: TTMSFNCTreeViewNode;

begin

 TMSFNCTreeView1.BeginUpdate;

 TMSFNCTreeView1.Columns.Clear;

 TMSFNCTreeView1.Nodes.Clear;

 TMSFNCTreeView1.Columns.Add.Text := 'Country';

 TMSFNCTreeView1.Columns.Add.Text := 'Capital';

 tn := TMSFNCTreeView1.AddNode(nil);

 tn.Text[0] := 'Europe';

 cn := TMSFNCTreeView1.AddNode(tn);

 cn.Text[0] := 'Germany';

 cn.Text[1] := 'Berlin';

 cn := TMSFNCTreeView1.AddNode(tn);

 cn.Text[0] := 'France';

 cn.Text[1] := 'Paris';

 cn := TMSFNCTreeView1.AddNode(tn);

 cn.Text[0] := 'United Kingdom';

 cn.Text[1] := 'London';

 tn := TMSFNCTreeView1.AddNode(nil);

 tn.Text[0] := 'Asia';

 cn := TMSFNCTreeView1.AddNode(tn);

 cn.Text[0] := 'Japan';

 cn.Text[1] := 'Tokyo';

 cn := TMSFNCTreeView1.AddNode(tn);

 cn.Text[0] := 'China';

 cn.Text[1] := 'Peking';

 TMSFNCTreeView1.EndUpdate;

end;

11 | P a g e

TMS FNC UI Controls

Important to note here is that the text in the multiple columns of the treeview can be simply

accessed with an array indexed Node.Text[]: string property.

In a next step, we'll use the TTMSFNCTreeView in virtual mode and insert 1 million nodes! Columns

are not virtual, so this must be initialized and to keep it simple, this will be initialized to one column:

begin

 TMSFNCTreeView1.Columns.Clear;

 TMSFNCTreeView1.Columns.Add;

 TMSFNCTreeView1.Columns[0].Text := 'Large treeview';

end;

To use the TTMSFNCTreeView in virtual mode, two events are crucial: the OnGetNumberOfNodes()

event and the OnGetNodeText() event. The first is triggered to know how many nodes at root level

or child level should be added. The latter is used to retrieve the column text of the node. Let's start

with the OnGetNumberOfNodes event. This event has parameters ANode and a var parameter

ANumberOfNodes. ANode is either a node with ANode.Level set to -1 indicating the number of root

level nodes is requested or it contains the node for which the number of child nodes is requested.

With the ANode.Level property, you can know how many hierarchical levels deep the node is. In this

example, we'll insert 1 million (100x100x100) nodes by inserting 100 root level nodes that have each

100 childs and each child has again 100 subchilds.

This event takes care of this:

procedure TForm1.TMSFNCTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TTMSFNCTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

 ANumberOfNodes := 100

 else

 if ANode.Level = 0 then

 ANumberOfNodes := 100

 else

 if ANode.Level = 1 then

 ANumberOfNodes := 100;

end;

12 | P a g e

TMS FNC UI Controls

Then, the other event for virtual node handling, OnGetNodeText is used to return the text for node

columns. Note that this event will be triggered for each node and for each column for this node. The

column for which the event is triggered is indicated with the AColumn parameter. As we have only 1

column in this example, this is ignored and the node text is directly returned:

procedure TForm1.TMSFNCTreeView1GetNodeText(Sender: TObject;

 ANode: TTMSFNCTreeViewVirtualNode; AColumn: Integer;

 AMode: TTMSFNCTreeViewNodeTextMode; var AText: string);

begin

 if ANode.Level = 0 then

 AText := 'Root node '+inttostr(ANode.Index)

 else

 if ANode.Level = 1 then

 AText := 'Child node '+inttostr(ANode.Index)

 else

 if ANode.Level = 2 then

 AText := 'Subchild node '+inttostr(ANode.Index);

end;

Conclusion

We hope this brief introduction of the major controls in the TMS FNC UI Pack whetted your appetite

to start exploring the components, discovering the benefits and efficiency of having one UI

component set to cover all the target operating systems you want to target and perhaps cook up

your first Linux GUI apps with LCL. You can get the trial version for Delphi from

http://www.tmssoftware.com/site/tmsfncuipack.asp and there is also a sample TV Guide project

that can be used from VCL, FMX and LCL that you can obtain from

http://www.tmssoftware.com/site/blog.asp?post=335

We're eager to learn how your experience is going and to hear your feedback, comments and further

wishes and needs in this direction.

http://www.tmssoftware.com/site/tmsfncuipack.asp
http://www.tmssoftware.com/site/blog.asp?post=335

